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EXCUTIVE SUMMARY 
 
In order to apply microsimulation-based models of land use and travel demand, socio-economic 

and demographic attributes about all individuals in a region is required. This disaggregate level 

information is not readily available and people resort to population synthesis procedures. These 

procedures combine readily available information in the form of sample data and marginal 

distributions to generate the required inputs. In this study, a simulation-based technique for 

population synthesis using a Hidden Markov Model (HMM) framework is presented. An important 

feature of the proposed approach is the ability to generate more heterogeneous synthetic 

households and persons. The proposed simulation-based approach is demonstrated using a case 

study for Connecticut. Synthetic population is generated for two block groups in Connecticut under 

alternate configurations. A comparative analysis is carried out to highlight the feasibility and 

applicability of the proposed approach in generating consistent multilevel agents while adhering 

to geography-based heterogeneity. The current work is similar in spirit to other recent simulation-

based generators, however, there are two important contributions. First, a hierarchical transition 

structure is proposed in the HMM-based model, to capture the dependencies across household and 

person-level attributes. Thus, the procedure ensures that both household and person level attributes 

are controlled simultaneously. Second, the transition matrices are estimated at the geography level 

incorporating the sample as well as marginal information available. This helps synthesize 

populations that are more accurate and consistent with available information.  
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Chapter 1.  Introduction 

1.1 Problem Statement 
Over the past few decades, microsimulation models have been gaining increasing interest in land-

use and transportation planning. In these models, behaviors of interest are simulated at the 

individual level while explicitly accounting for the environment in which they make decisions and 

the constraints and interactions they experience. Subsequently, these decisions are aggregated 

spatially and temporally to understand how a system will perform in alternate environments (1–

3). Microsimulation models are better suited for assessing impacts of different policies of interest 

because of their focus on the individual decision maker and the underlying decision-making 

processes. They generate results at rich spatial and temporal resolution allowing planners to draw 

insights that are otherwise not possible using more aggregate model forms (4, 5).  

 

Disaggregate microsimulation models require detailed household and person level information for 

each individual agent. However, such information is not readily available owing to a variety of 

reasons including privacy issues and resource limitations among others. Instead, detailed 

information for a sample of the population (often referred to as sample data) and aggregate 

information (often referred to as marginal distribution data) about the entire population are 

available, typically from Census Bureaus or equivalent bodies (6).  Analytical procedures are then 

applied to combine them together to create detailed records for all individuals in a region. This 

process is often referred to as synthetic population generation. With growing interest in 

microsimulation models, interest in developing synthetic population generators (SPG) has also 

increased. A brief overview of these approaches along with some examples is next chapter. A 

detailed review of synthesizers can be found in (1, 4, 7, 8).  

1.2 Objectives 
The objective of this report is to (1) propose a new simulation-based population synthesis 

technique using a hierarchical structure of Hidden Markov Model (HMM) that can generate 

household and person level attributes simultaneously; (2) propose a novel procedure to estimate 

the transition probabilities using both disaggregate sample datasets and geography-based attribute 

controls to address spatial heterogeneity in synthetic population.  
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1.3 Report Overview 

The rest of the paper is structured as follows. Chapter 2 includes a brief discussion on literature 

review of several popular synthesis techniques. In Chapter 3, the general HMM approach is 

described. In addition, the section also discusses how this approach can be adapted to perform 

population synthesis that controls for both household and person attributes simultaneously. 

Chapter 4 presents the case study including data preparation, model setup, results, and discussion 

of findings. Finally, concluding thoughts along with limitations and future extensions are presented 

in Section 5. 
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Chapter 2.  Literature Review 

2.1 Introduction 
This chapter describes the most popular population synthesizing techniques that has been evolved 

over the years to overcome the limitations of their predecessors. This discussion is very helpful to 

understand the current practice in population synthesis and their use-cases in various domains. The 

techniques within different SPGs can be clustered into two main groups: fitting-based approaches 

and combinatorial optimization (CO) procedure (9). 

2.2 Fitting-based Approaches 
Fitting-based approaches focus on estimating a multiway distribution of agents’ attributes. 

Subsequently, agents are generated from the sample based on the estimated multiway distribution, 

and Monte Carlo based sampling technique. Iterative Proportional Fitting (IPF) is the most 

dominant fitting-based technique in the literature. Deming and Stephan (1940) first introduced IPF 

to calculate cell values of a multiway distribution through an iterative algorithm such that observed 

marginal distribution are matched (10). Beckman et al. (1996) developed a synthetic population 

generator based on the IPF based procedure (11). This was one of the first SPGs and has been 

widely adopted in many operational disaggregate models in the past. A number of SPGs have been 

developed since to address different issues and limitations with the Beckman et al. (1996) 

procedure. For example, Guo and Bhat (2007) proposed an IPF-based procedure for controlling 

both household and person level marginal distributions (12). Also, addressing the same problem 

of household and person control matching, Arentze et al. (2007) introduced the concept of 

relational matrices in the IPF procedure (13). Ye et al. (2009) developed Iterative Proportional 

Updating (IPU) – a heuristic iterative procedure that also accounts for both household and person 

level marginal distributions (14). More recently, Konduri et al. (2016) extended IPU to control for 

marginals at multiple spatial resolutions (8). For high dimensional contingency table, Pritchard 

and Millar (2012) introduced a sparse matrix-based data structure in IPF framework to deal with 

memory consumption issues while controlling both household and person-level attributes 

simultaneously (15). There are several other variants of IPF implementations including 

hierarchical and multi-stage IPF that focus on fitting both household and person-level attributes 

maintaining their inter-level association (16, 17). 
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2.3 Combinatorial Optimization (CO) Approaches 
Along with fitting-based techniques, CO approaches have been emerging as a promising 

alternative to population synthesis. CO approaches also require both sample and marginal 

distributions. They also employ an iterative procedure to generate population for a geographical 

unit. The iterative procedure begins with a selection of a pool of agents and assessing match with 

the given marginal distributions. At each step of the iteration, agents may be added and/or replaced 

with a new agent from the sample dataset until an appropriate goodness of fit is achieved. Voas 

and Williamson (2000) implemented this approach by optimizing the sample weights such that the 

synthetic population matches the observed attributes for a geographical unit (18). Abraham et al. 

(2012) applied CO algorithm to control both household and person level controls for multiple 

geographic resolution (19). Simulated Annealing is another CO technique that follows a 

probabilistic reweighting procedure to pull a suitable set of agents from the sample (18, 20).  There 

have also been studies comparing these two popular approaches (5, 21, 22). While CO has been 

claimed to be superior in terms of performance, the fitting-based approaches are easier to 

implement and more scalable. 

 
2.4 Simulation-based Approaches  
More recently, there has been a third category of SPGs namely simulation-based approaches. The 

main advantage of these over earlier approaches is the ability to create more diverse synthetic 

populations. In both fitting-based and CO approaches, records from the sample are cloned to create 

a synthetic population. This can lead to lumpiness in the synthetic population and the synthesized 

results may not capture the full underlying distribution. Simulation-based approaches use a variety 

of techniques to model the joint distribution of household and person attributes underlying the 

population. Subsequently, synthetic population is generated by simulating draws from the joint 

distribution to create agents and their attributes. Caiola and Reiter (2010) implemented Random 

Forests-based synthesizer that can capture the attribute relationships effectively and performs well 

for high dimensional configuration (23). Sun and Erath (2015) proposed a probabilistic approach 

based on the Bayesian Network model (4). The study demonstrated how a Bayesian network can 

be incorporated in population synthesis to understand the underlying structure of population with 

a large set of attributes. Farooq et al. (2013) introduced a simulation-based approach for population 

synthesis where they implemented parametric models for conditional probability estimation and 



5 

applied Markov Chain Monte Carlo (MCMC) procedure for generating population (7). More 

recently, Saadi et al. (2016) developed a new population synthesis technique using a Hidden 

Markov Model (HMM) (9).  In this study, authors note that the HMM framework is more adaptable 

and efficient when it comes to fusing multiple micro-samples in model training and preserving 

more heterogeneous composition in synthetic population. This report builds on the work by Saadi 

et al. (2016) by addressing two important limitations.  

 

First, in their study, the synthetic population generation was only limited to persons; households 

are not generated. The study acknowledges the need for extending this work so that that households 

and persons are both synthesized while also accounting for the available household and person 

level information. In this work, a hierarchical transition structure is proposed in the HMM-based 

model to capture the joint distribution of both households and persons simultaneously. The model 

captures the dependencies across household and person-level attributes and can be used to simulate 

both households and persons.  

 

Second, in their work, they only use a single model to generate a synthetic population for all 

geographies in a region. This approach may compromise on the heterogeneity in the population 

across geographies. Additionally, the model doesn’t incorporate the marginal distributions 

information that is available. In other words, this approach ignores information that can potentially 

be used to enhance the synthetic population. In this paper, the transition matrices for the HMM are 

estimated using a novel procedure that incorporates information available from both the sample 

and the marginal distributions. This, in turn, helps develop populations that are more accurate and 

consistent with available information. 

 

The feasibility and the applicability of proposed HMM model and the estimation procedure are 

demonstrated by generating a synthetic population using data from the American Census Bureau 

for 2 block groups in Connecticut. Synthetic population was generated under a variety of scenarios 

mimicking existing simulation-based procedures. Results are compared across scenarios to 

highlight the contributions of the proposed approach.  
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Chapter 3.  Methodology 

3.1 Overview of HMM Framework 
One way to characterize the attributes of an individual (household) is as a sequence of characters. 

The length of the sequence is equal to the number of attributes of interest. Each character in the 

sequence represents a value for the attribute. Hidden Markov Models (HMM) can be used to 

characterize such a sequence. HMM are probabilistic models that can be used for any sequence 

labeling problem (24, 25). HMMs are very dynamic in a sense that they can conceptualize any 

complex sequence analysis model using graphical methods (26). To explain the functional aspects 

of HMM, a simple toy example is presented. Consider that one is interested in understanding the 

educational journey for those who are currently employed. Assuming everyone employed has 

completed middle school, the educational journey can be represented by an HMM shown in Figure 

3.1.  

 

 
Figure 3.1 Structure of a Simple HMM 

 
Each oval represents a state (the state is represented by a character and the associated definition is 

presented in the figure) and each directed link represents a potential transition from one state to 

the next. In this figure, a path consisting of a series of directed links beginning with the state A 

(i.e. “Middle School” Graduate) and ending in state H (i.e. “Employed”) represents an educational 

journey. For example, a sequence ACEH represents an educational journey where someone 

completed High School after Middle School, skipped college and entered the workforce and got 

employed. Transitions are possible from any of the states to any other state. However, for any 

given use case, only a subset of transitions is reasonable and/or supported by data. This type of 

HMM is called a Bakis HMM where some transitions have zero probability (27). For example, a 
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transition from state A to state H is probably not supported by data. On the other hand, transition 

from state C to state B is inconsistent. In HMM, there are some dummy states that helps join 

different parts of the model without disturbing the actual transition patterns. For sequence 

generation problems, dummy states are very helpful for proper identification of different portions 

of the model. The states that emit a symbol or character are referred to as active states. 

 

HMM comprises of three main parameters: transition probability matrix, initial probability vector, 

and emission probability matrix. The architecture of HMM is built with a finite set of  states 

represented by vector 𝐴𝐴 =  {𝐴𝐴1, 𝐴𝐴2, 𝐴𝐴3, … , 𝐴𝐴𝑁𝑁} where 𝑁𝑁 is the total count of states. Each state is 

associated with a multidimensional probability distribution that regulates the transition to other 

possible states (28). Transitions from state 𝑖𝑖 to state 𝑗𝑗 are governed by a transition probability 

matrix 𝑇𝑇 where 𝑇𝑇 =  {𝑃𝑃(𝑡𝑡𝑖𝑖𝑖𝑖)} and each element in the matrix represents the transition from state 

𝑖𝑖 to state 𝑗𝑗. In other words, a given state 𝑘𝑘 is not observable directly. Instead, state 𝑘𝑘 manifests 

itself in the form of an outcome from an observation set 𝛽𝛽𝑘𝑘  =  {𝛽𝛽1𝑘𝑘, 𝛽𝛽2𝑘𝑘, 𝛽𝛽3𝑘𝑘, … , 𝛽𝛽𝑚𝑚𝑚𝑚} where m is 

the size of the set. 𝑀𝑀 is the set of all observation symbols corresponding to the 𝑁𝑁 states. An 

observation symbol corresponding to state 𝑘𝑘 is observed based on an emission probability vector 

𝐸𝐸𝑘𝑘  =  {𝑃𝑃(𝛽𝛽𝑚𝑚𝑚𝑚)}. HMM also requires a set of initial probabilities that represents the state from 

which the sequence starts. The set of initial probabilities is given by a vector  𝜋𝜋 =  {𝑃𝑃(𝑖𝑖)}. In 

terms of the structure of these elements, 𝑇𝑇 is a 𝑁𝑁 × 𝑁𝑁 dimensional matrix, 𝐸𝐸 is a 𝑁𝑁 × 𝑀𝑀 

dimensional matrix and 𝜋𝜋 is 𝑁𝑁 dimensional vector. In addition to the above parameters, HMM also 

incorporates some logical and consistency constraints.  

 
0 ≤ 𝑃𝑃�𝑡𝑡𝑖𝑖𝑖𝑖�  ≤ 1,      1 ≤ 𝑖𝑖, 𝑗𝑗 ≤ 𝑁𝑁                                (1) 
 
∑ 𝑃𝑃�𝑡𝑡𝑖𝑖𝑖𝑖� = 1,     1 ≤ 𝑖𝑖 ≤ 𝑁𝑁 𝑁𝑁
𝑗𝑗=1                 (2) 

 
0 ≤ 𝑃𝑃(𝛽𝛽𝑚𝑚𝑚𝑚)  ≤ 1,      1 ≤ 𝑚𝑚 ≤ 𝑀𝑀,  1 ≤ 𝑘𝑘 ≤ 𝑁𝑁              (3) 
 
∑ 𝑃𝑃(𝛽𝛽𝑚𝑚𝑚𝑚) = 1 ,     1 ≤ 𝑘𝑘 ≤ 𝑁𝑁 𝑀𝑀
𝑚𝑚=1                 (4) 

 
∑ 𝑃𝑃(𝑖𝑖) = 1𝑁𝑁
𝑖𝑖=1                   (5) 

 

As noted above, an external observer can only see the outcome corresponding to a state and the 

actual states are hidden. Therefore, this configuration of the Markov model is called Hidden 
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Markov Model. Alternatively, if the state is observed directly then it is commonly referred to as 

just a Markov Model. Depending on the variant of the Markov Model that is applicable for a given 

situation, alternative procedures are available for estimating the parameters.  

 

To incorporate more complex models in HMM framework, researchers have been developing 

extensions to HMM such as Hierarchical HMM (HHMM), Layered HMM (LHMM) and Nested 

HMM (NHMM) (29–32). Among these variants, HHMM is of particular interest given its 

relevance to the population synthesis approach proposed in the next subsection. HHMM allows 

one to organize states using a hierarchical structure. In HHMM, there are multiple root states that 

can each be represented as an individual HMM. These root states are stacked as layers in a 

hierarchical structure to form the full HHMM model. When a transition occurs to a root states, 

typically the corresponding underlying HMM is executed and the model then proceeds to the next 

root state in HHMM hierarchy. The HMMs within root states can have shared connections across 

root states allowing for a shared structure and recurring pass in the model. This hierarchical model 

structure is a key ingredient to extend the work by Saadi et al. (2016) to deal with the multi-level 

population synthesis i.e. synthesizing both households and persons. The basic idea is that person 

models can be thought of as the descendent of root states that can embedded in a hierarchical 

fashion within a household model which again can be a descendent of another root state. This 

approach allows for ensuring dependencies between person attributes and household attributes. 

Building and training a HHMM is computationally very expensive (33). HHMMs can be converted 

to its equivalent flat HMM without compromising the structural integrity of the model (29, 34). 

An HHMM that has shared transition structure can be converted to flat HMM by duplicating the 

sub-models. Though the flattening addresses the issue of computational tractability, it comes at 

the expense of increase in dimension of the HMM. In the next subsection, the proposed approach 

to implementing multi-level population synthesis using HHMM intuition and HMM equivalency 

is presented. Further, since the states are observed directly in the population synthesis case, we are 

working with Markov Model variant of the HMM i.e. state and observed outcome are same and 

the emission probability vector E_k for any state k is given as {1}. In the remaining text while the 

term HMM will be used, it must be noted that the Markov Model variant is what is adopted in the 

synthesis approach. 
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3.2 HMM-based Population Synthesis 

3.1.1. Hierarchical Configuration of Household and Person Model 
The first objective of this research was to use the HMM framework to synthesize not only 

households but also persons within the households. While the work by Saadi et al. (2016) can be 

used to synthesize households and persons separately, an additional procedure is needed to tie 

them together. The HHMM forms the basis for incorporating both household and person synthesis 

jointly. The flattening of HHMM and its equivalency to HMM is adopted to estimate the model. 

In HMM, states are considered as attribute categories for both household and person models. 

Further, key household attributes are used to generate root states. Then person models consistent 

with the defined root states are embedded to build the hierarchical structure. Building the 

household model is the same as Saadi et al. (2016). Each household attribute and associated 

categories serve as active states in the household model. As noted earlier, a hierarchical tree 

structure is used to build household level HMM model and then to incorporate the person level 

HMM models within the household model. Subsequently, this allows synthesis of both household 

and person attributes together while also accounting for the consistency between the household 

and person level characteristics. A simple household model is shown in Figure 3.2.  

 
Figure 3.2 Simple Structure of a Household Model  

 
Assuming that there are two types of households – family and non-family, the number of household 

members is largely influenced by the household composition in that household. Therefore, the 

states of SIZE attribute are branched out depending on the states of TYPE attribute in Figure 3.2. 
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In similar fashion, it is possible to accommodate other household attributes such as PERSON 

UNDER 18 YEARS. In that case, the states of PERSON UNDER 18 YEARS have separate 

branches originating from each of the SIZE states. The number of states for attribute PERSON 

UNDER 18 YEARS is governed by the originating SIZE state. For example, for a household with 

three persons, there will be maximum of two persons with age below 18 years (assuming that the 

householder’s age is above 18 years). Therefore, there will be three possible transitions from the 

SIZE-3 state: NO PERSON UNDER 18 YEARS, 1 PERSON UNDER 18 YEARS, and 2 

PERSONS UNDER 18 YEARS. Now by defining the states of PERSON UNDER 18 YEARS as 

a root states, person models for these household composition can be embedded based on the 

hierarchy. For example, in the state NO PERSON UNDER 18 YEARS, a model representing 

householder, a model for second person, and a model for third person are embedded. On the other 

hand, for the state 2 PERSONS UNDER 18 YEARS, a householder model is embedded one time 

and the person model for those under 18 is embedded two times. Figure 3.3 illustrates the fully 

embedded SIZE-3 branch based on the household composition. 

 
Figure 3.3 Connection of Person Model with Household Model 

 
As can be seen, the proposed HMM structure allows the generation of household attributes in the 

upper level of the model and then proceeds towards lower level to generate person level attributes. 

This model can also be configured to deal with open ended categories. Choice states can be placed 

in the model structure to make a decision about the next transition to an embedded HMM subject 

to some constraint. As noted earlier, each person model is an individual HMM similar to Saadi et 
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al. (2016) that are constructed using person-level attributes. These models are duplicated as 

necessary within the household states. However, the idea of recurring pass allows the use of same 

person model without duplicating thus reducing the overall dimensions of the HMM. These 

individual models have a simple transition structure. Nonetheless, the order of attributes is always 

important to capture the conditional transitions between attributes. In order to preserve the 

relationship of persons belonging to a particular household, person models have root and decision 

states and the concept of guaranteed pass helps to build inter-person connections. This is essential 

to deal with inconsistent inter-personal relationship during simulation. Figure 3.4 illustrates an 

example of introducing decision states to deal with gender issues while simulating the householder 

and second person for family households. This helps to obtain consistent gender information of 

the second person based on householder gender information using a conditional probability 

distribution. 

 
Figure 3.4 Configuration of a Single Person Model 

Figure 3.5 illustrates a simple hierarchical structure of proposed HMM framework. For the purpose 

of illustration, only a handful of attributes is configured in the proposed hierarchical structure.  
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Figure 3.5 A Simple Hierarchical Structure of Proposed HMM Framework 

3.1.2. Incorporating Geography-based Controls 
The second objective of this research was to present an approach for estimating the transition 

probabilities that not only accounts for the information contained in the sample data but also 

accounts for the marginal distributions so that population that agree with available information can 

be generated. For typical HMM models, transition frequencies between the states are estimated 

from an observed sample. In population synthesis, this direct procedure can be used as outlined in 

the study conducted by Saadi et al (2016). However, this direct procedure has a major limitation 

in terms of matching attribute marginals for a geographic unit. The transition patterns of attributes 

estimated directly from sample data do not represent the real population structure for a geographic 
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unit. As a result, there will be large differences between synthetic population results and observed 

marginal distributions for a geographic unit. Saadi et al. (2018) proposed a hierarchical procedure 

to deal with this limitation by integrating HMM and IPF under the same framework (35). However, 

their approach doesn’t consider accounting for both household and person marginal 

simultaneously.  This study proposes a new procedure for estimating the transition counts using 

both aggregate and disaggregate information. In the proposed approach, weights for sample 

households are first estimated using Iterative Proportional Updating algorithm proposed by Ye et 

al. (2009) using all available household and person level marginals. These weights are then used 

to estimate the transition probabilities. The transition probabilities thus generated conform to the 

available marginal distributions. Subsequently, the synthetic population also accounts for this 

information and fewer deviations are observed with respect to available marginals. 



15 

Chapter 4.  Case Study and Result Analysis 

4.1 Data Preparation 
A case study was conducted to demonstrate the proposed HMM population synthesis framework 

and associated transition probability estimation routine. The study considers 4 household attributes 

(household type, household income, presence of persons under 18 years, and household size) and 

4 person attributes (age, employment, ethnicity, and gender) to generate synthetic population for 

two block groups in Connecticut (IDS: 0427002, 2531001). Block groups are selected from two 

different Public-Use Micro Areas (PUMA). Both the aggregate and disaggregate data are collected 

from US Census Bureau. The aggregate data is processed from American Community Survey 

(ACS) 2010-2014 Summary datasets and disaggregate data is collected from corresponding Public 

Use Micro Sample (PUMS). The disaggregate data contains information on 70,221 households 

and 181,082 persons at PUMA level. Household and person attributes are defined as categorical 

variables, and the description of attributes and summary of aggregate marginals for two block 

groups are listed in Table 4.1. 

 

A hierarchical transition structure was developed using the household and person attributes 

mentioned above. The order of attributes in the household model was household income, 

household type, household size, and presence of persons under 18 years. The household model has 

two major branches depending on the household types, because family and non-family households 

have completely different household compositions. Then based on the household size, categories 

for presence of persons under 18 years form the second set of branches. These categories are also 

set as root states to embed the person models. The order of attributes in person model is age, 

employment, ethnicity, and gender. The hierarchical transition matrix contains a total of 4203 

states including active, dummy and decision states. Therefore, the dimension of transition matrix 

considered in this case study is 4203 by 4203. 
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Table 4.1 Description of Control Variables and Marginals for Two Block Groups 
 

Attributes Description BG0427002 BG2531001 
HHTYPE_1 Family Household 448 676 
HHTYPE_2 Non-family Household 595 365 

HHI_1 Less than 15000USD 65 5 
HHI_2 15000USD - 25000USD 85 103 
HHI_3 25000USD - 50000USD 217 308 
HHI_4 50000USD - 75000USD 199 217 
HHI_5 75000USD - 100000USD 102 96 
HHI_6 100000USD - 150000USD 270 186 
HHI_7 More than 150000USD 105 126 
HHC_1 Presence of persons under 18 years (YES) 204 310 
HHC_2 Presence of persons under 18 years (NO) 839 731 

HHSIZE_1 1 person 541 289 
HHSIZE_2 2 persons 288 318 
HHSIZE_3 3 persons 111 302 
HHSIZE_4 4 persons 103 96 
HHSIZE_5 5 persons 0 17 
HHSIZE_6 6 persons 0 4 
HHSIZE_7 7 persons or more 0 15 
PAGE_1 Less than 14 years 288 333 
PAGE_2 15 years - 17 years 0 170 
PAGE_3 18 years - 24 years 165 289 
PAGE_4 25 years - 44 years 440 617 
PAGE_5 45 years - 59 years 627 737 
PAGE_6 60 years - 74 years 295 216 
PAGE_7 75 years or more 98 183 

PEMPLOY_1 Less than 16 years 288 368 
PEMPLOY_2 Employed for last 12 months 1,172 1,618 
PEMPLOY_3 Unemployed for last 12 months 453 559 

PE_1 Caucasian 1,504 2,486 
PE_2 Others 409 59 
PG_1 Male 756 1,238 
PG_2 Female 1,157 1,307 

 

The transition structure is estimated using three different approaches to highlight the feasibility 

and applicability of the proposed IPU based estimation approach.  

I. Case 1: The transition matrix is estimated directly using the entire PUMS data resulting 

in a general transition probability distribution for all block groups. This is similar in spirit 

to the approach proposed by Saadi et al. (2016).   
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II. Case 2: For each block group, the transition matrix is estimated using the sample records 

of only those households that belong to corresponding PUMA geographies. PUMA 2300 

that is associated with block group BG0427002 has 2,000 household records and 5,196 

person records. PUMA 100 associated with block group BG2531001 includes 1,868 

household records and 4,546 person records. Since the block groups are selected from two 

different PUMA, two different transition matrices were prepared.  

III. Case 3: In this case, the transition matrices are estimated using the proposed IPU based 

procedure for each of the block groups. For both block groups, the entire PUMS data is 

used as seed. Each block group marginals are used as controls in estimating weights for 

transition frequencies. Two transition matrices are prepared for two block groups in this 

case. 

 

The proposed HMM model framework was implemented using a Python package named 

“hmmlearn” (36). This package allows the generation of as many households as needed. 

Households along with associated persons were generated in form of attribute sequences. Then the 

attribute sequences were processed using a decoding program to obtain the attribute set. For each 

case, 5 simulations were run to obtain a representative set of synthetic population.  

 

4.2 Results and Findings 
The total numbers of synthetic households and persons for each of the cases are summarized in 

Table 4.2. These totals reflect the average of the total number of households and persons from 5 

simulations. In each case, the total number of synthetic households match perfectly with the 

observed total number of households for the block groups. Since the household model is placed at 

the upper level of the proposed hierarchical structure and the drawing unit is also a household, this 

match is not surprising. However, there are some differences in the total number of synthetic 

persons. As the person models are executed based on the household size distribution, the number 

of persons is simulated based on the probability distribution at that level. For block group 

BG0427002, over-synthesis of persons is observed for the first two cases with significant variation. 

On the other hand the total number significantly improves in Case 3 with a smaller percent 

difference of 1.36%. For block group BG2531001, the percent difference of the total number of 
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persons for each case is comparatively low compared to the other block group. However, when 

compared between the cases, Case 1 provides better match while Case 3 shows a variation of 

4.75%.  
 

Table 4.2  Summary of Synthetic Households and Persons for Three Cases 
 

 BG0427002 BG2531001 

 Marginals Case 1 Case 2 Case 3 Marginals Case 1 Case 2 Case 3 

Total Households 1,043 1,043 1,043 1,043 1,041 1,041 1,041 1,041 

Percent Difference (%) NA 0 0 0 NA 0 0 0 

 

Total Persons 1,913 2,521 2,660 1,887 2,545 2,512 2,470 2,424 

Percent Difference (%) NA -31.78 - 39.05 1.36 NA 1.30 2.95 4.75 
Note: NA = not applicable 
 

In order to understand the fitting of synthetic output with observed aggregate data, the synthetic 

marginals for each case are compared with corresponding observed marginals for two block 

groups. Figure 4.1 and 4.2 represent the comparison of marginals for block groups BG0427002 

and BG2531001 respectively. In Figure 4.1, the synthetic population in Case 3 match closely with 

the observed category marginals both at household and person level. Table 4.1 shows that there is 

no household that has more than 4 persons and no person in age category 2. Synthetic results in 

Case 3 reflect this information completely, whereas the other two cases are unable to capture this 

information from aggregate marginals and they generate households and persons with these 

unavailable categories that is inconsistent with this block group information. Figure 4.2 also shows 

that the synthetic population in Case 3 fit very well with observed marginal information for this 

block group except for two attribute categories at the person level. That being said, for both block 

groups, Case 3 can incorporate the marginal distributions information of that block group to 

generate more reliable synthetic household and persons. On the other hand, the performances of 

Case 1 and Case 2 are very poor in matching the observed marginal – this is reasonable because 

these do not incorporate the marginal distribution information during the synthesis. Case 2 should 

produce better results than Case 1 as transition frequencies are estimated from corresponding 

PUMA records which can have more relevant information regarding the block groups. However, 

the analysis shows that the result is not consistent for all attribute categories and in some cases its 
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performance is poorer than Case 1. This may be attributed to smaller sample sizes resulting from 

only using the PUMA specific sample information. 

 
Figure 4.1 Comparison of Marginals for BG0427002 

 

 
Figure 4.2 Comparison of Marginals for BG2531001 
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To illustrate the differences in synthesis of each case further, absolute percent difference (APD) is 

calculated for all attribute categories of two block groups. For block group BG0427002, the 

percent differences are very large for Case 1 and Case 2 compared to Case 3 (Figure 4.3). For Case 

3, all attribute categories have APD lower than 12%. The average of APD across categories is 

about 55.33%, 64.56% and 3.62% for Case 1, Case 2 and Case 3 respectively.  

 

In Figure 4.4, Case 3 also provides very lower APD compared to the other two cases. However, in 

the case of infrequent attribute categories, it shows comparatively large APD due to the fact that 

the observed marginals are very low for these categories and a small variation can result in large 

percent difference. For this block group, the average of APD for all attribute categories is about 

42.21%, 40.56% and 3.85% for Case 1, Case 2 and Case 3 respectively. Therefore, it can be noted 

that in terms of matching individual household and person attribute categories, Case 3 renders less 

difference compared to Case 1 and Case 2.  

 

 
Figure 4.3 Comparison of Absolute Percent Differences for BG0427002 
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Figure 4.4 Comparison of Absolute Percent Differences for BG2531001 

 
From Figure 4.3 and Figure 4.4, it can be seen that Case 3 performs better than other cases, 

however, a scatter plot helps better understand the overall fit of both household and person-level 

attributes synthesized using the proposed HMM framework. Figure 4.5 represents a two-

dimensional plot where each observation is a particular household or person attribute categories. 

For both block groups, the results from Case 3 exhibit a very good fit with the observed category 

totals with higher R-squared values. The observations obtained from Case 1 and Case 2 show more 

scattered distribution. This plot helps to explain why aggregate controls are necessary to generate 

more fitted population in HMM framework. 

 
Figure 4.5 Comparison of Synthetic Attributes with Block Group Marginals 
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Chapter 5.  Conclusion and Future Work 

In order to apply microsimulation-based models of land use and travel demand, socio-economic 

and demographic attributes about all individuals in a region is required. This disaggregate level 

information is not readily available and people resort to population synthesis procedures. These 

procedures combine readily available information in the form of sample data and marginal 

distributions to generate the required inputs. With the increasing interest in disaggregate models, 

a number of synthetic population generators have been developed in the recent past. However, 

most synthesis techniques replicate the agents from sample data to generate the synthetic 

population. This leads to issues of lumpiness in the results and an inability to capture the true 

underlying distribution. Simulation-based synthesis techniques have been developed recently to 

resolve these issues. More recently HMM-based techniques have been proposed. The model 

attempts to define the process as comprising of states and achieves to capture the joint distribution 

of the states and transitions between states. In order to adopt HMM for population synthesis, 

problem of population generation is cast as a sequence labeling problem. Being a probabilistic 

procedure, the model can simulate agents’ attributes and thus overcomes the issues associated with 

replication noted above.  

 

In this research, a new HMM-based population synthesis procedure is proposed that provides two 

main contributions. First, the study developed a hierarchical structure of HMM to generate 

synthetic household and persons simultaneously. Second, in order to ensure that the synthesized 

information is consistent with available aggregate information, a new IPU based procedure is 

proposed to estimate the underlying transition probability matrix. 

 

A case study was presented to demonstrate the feasibility and applicability of the proposed 

approach. Analysis from a case study confirms that the proposed hierarchical structure of HMM 

performs very well in generating household and person-level information simultaneously. The 

transition probability estimation procedure proposed in this study helps to incorporate geography-

based information as controls allowing for more reliable synthetic households and persons 

generation.  
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There are some limitations of the current work that offer up avenues for future research. First, 

though the proposed model can generate an exact number of households in each simulation, 

matching the total number of persons is still an issue that needs to be explored more. In the present 

configuration of the model, the total number of persons normally shows a lower percent variation 

across simulations. Further study is needed to figure out a better configuration of the model such 

that the total number of persons match closely with observed totals. Second, application of the 

proposed approach is not as straightforward as some of the other synthesis procedures. For 

implementing this hierarchical structure for a different use case, a comprehensive study is required 

to understand the correlation between the household and person attributes of interest. Depending 

on the use-case, a systematic flow of attributes both at household and person-level should be 

established to build the hierarchical configuration. Third, the proposed model framework is 

developed and tested using a limited number of variables. However, the dimension of the model 

will increase exponentially for a larger set of attributes resulting in a large transition matrix with 

more complex transition patterns. One potential way to deal with the large dimensional model can 

be the disintegration of the model structure into several modules according to attribute hierarchy 

and simulation of households and persons sequentially from those modules. Again, further 

research is required to establish and validate this decomposition of HMM.  
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